Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 103(12): e3832, 2022 12.
Article in English | MEDLINE | ID: mdl-35876117

ABSTRACT

The time taken to detect a species during site occupancy surveys contains information about the observation process. Accounting for the observation process leads to better inference about site occupancy. We explore the gain in efficiency that can be obtained from time-to-detection (TTD) data and show that this model type has a significant benefit for estimating the parameters related to detection intensity. However, for estimating occupancy probability parameters, the efficiency improvement is generally very minor. To explore whether TTD data could add valuable information when detection intensities vary between sites and surveys, we developed a mixed exponential TTD occupancy model. This new model can simultaneously estimate the detection intensity and aggregation parameters when the number of detectable individuals at the site follows a negative binomial distribution. We found that this model provided a much better description of the occupancy patterns than conventional detection/nondetection methods among 63 bird species data from the Karoo region of South Africa. Ignoring the heterogeneity of detection intensity in the TTD model generally yielded a negative bias in the estimated occupancy probability. Using simulations, we briefly explore study design trade offs between numbers of sites and surveys for different occupancy modeling strategies.


Subject(s)
Birds , Models, Biological , Animals , Probability
2.
Trends Ecol Evol ; 37(9): 759-767, 2022 09.
Article in English | MEDLINE | ID: mdl-35691772

ABSTRACT

The Southern Hemisphere differs from the Northern Hemisphere in many aspects. However, most ecological and evolutionary research is conducted in the Northern Hemisphere and its conclusions are extrapolated to the entire globe. Therefore, unique organismal and evolutionary characteristics of the south are overlooked. We use ornithology to show the importance of including a southern perspective. We present examples of plumage pigmentation, brood-parasitic nestling ejection, flightlessness, female song, and female aggression modulated by progesterone as complementary models for investigating fundamental biological questions. More research in the Southern Hemisphere, together with increased cooperation among researchers across the hemispheres and within the Southern Hemisphere, will provide a greater global outlook into ecology and evolution.


Subject(s)
Birds , Pigmentation , Animals , Biological Evolution , Ecology , Female
3.
J Therm Biol ; 95: 102815, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33454043

ABSTRACT

For endotherms, maintaining body temperature during cold winters is energetically costly.Greater increase in winter maximum thermogenic capacity (Msum) has typically been correlated with improved cold tolerance. However, seasonal studies have shown equivocal direction change in basal metabolic rate (BMR) in winter, perhaps explained by latitude or phylogeny. We examined seasonal metabolic responses in the Cape rockjumper (Chaetops frenatus; "rockjumper"), a range-restricted mountain bird. We hypothesized that, given their mountain habitat preference, rockjumpers would be physiologically specialized for cooler air temperatures compared to other subtropical passerines. We measured body condition (using the ratio of Mb/tarsus), BMR, and Msum, in wild-living rockjumpers during winter and summer (n = 12 adults in winter -- 4 females, 8 males; n = 12 adults in summer -- 6 females, 6 males). We found birds had lesser BMR and thermal conductance, and greater Msum and body condition, in winter compared to summer. These changes may help rockjumpers conserve energy in winter while still allowing birds to produce more metabolic heat during the coldest air temperatures. When compared with existing data on avian seasonal metabolic adjustments, rockjumper BMR fit general patterns observed in passerines, but their Msum was low compared with other members of the oscine Passeriformes. These patterns may be explained by the narrow temperature range of their habitat not requiring cold-adjustment, or perhaps by their basal placement within passerine phylogeny. Further work on the physiological phenotypic plasticity in habitat specialists across different latitudinal zones and taxa is needed to better understand the relationship between metabolism, habitat, and phylogeny.


Subject(s)
Acclimatization , Ecosystem , Passeriformes/physiology , Thermogenesis , Altitude , Animals , Basal Metabolism , Biological Evolution , Passeriformes/classification , Passeriformes/metabolism , Phylogeny , Seasons
4.
Conserv Physiol ; 3(1): cov048, 2015.
Article in English | MEDLINE | ID: mdl-27293732

ABSTRACT

We investigated whether observed avian range contractions and population declines in the Fynbos biome of South Africa were mechanistically linked to recent climate warming. We aimed to determine whether there were correlations between preferred temperature envelope, or changes in temperature within species' ranges, and recent changes in range and population size, for 12 Fynbos-resident bird species, including six that are endemic to the biome. We then measured the physiological responses of each species at air temperatures ranging from 24 to 42°C to determine whether physiological thermal thresholds could provide a mechanistic explanation for observed population trends. Our data show that Fynbos-endemic species occupying the coolest regions experienced the greatest recent reductions in range and population size (>30% range reduction between 1991 and the present). In addition, species experiencing the largest increases in air temperature within their ranges showed the greatest declines. However, evidence for a physiological mechanistic link between warming and population declines was equivocal, with only the larger species showing low thermal thresholds for their body mass, compared with other birds globally. In addition, some species appear more vulnerable than others to air temperatures in their ranges above physiological thermal thresholds. Of these, the high-altitude specialist Cape rockjumper (Chaetops frenatus) seems most at risk from climate warming. This species showed: (i) the lowest threshold for increasing evaporative water loss at high temperatures; and (ii) population declines specifically in those regions of its range recording significant warming trends. Our findings suggest that caution must be taken when attributing causality explicitly to thermal stress, even when population trends are clearly correlated with rates of warming. Studies explicitly investigating the mechanisms underlying such correlations will be key to appropriate conservation planning.

SELECTION OF CITATIONS
SEARCH DETAIL
...